|
Young Brunette Girl Posing In A Transparent Vitreous Glass Swing Chair
|
What is the nature of the transition between a fluid or regular solid and a glassy phase?
"The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition." P.W. Anderson
Glass is an amorphous solid. It exhibits an atomic structure close to that observed in the supercooled liquid phase but displays all the mechanical properties of a solid. The notion that glass flows to an appreciable extent over extended periods of time is not supported by empirical research or theoretical analysis.
Although the atomic structure of glass shares characteristics of the structure in a supercooled liquid, glass tends to behave as a solid below its glass transition temperature. A supercooled liquid behaves as a liquid, but it is below the freezing point of the material, and in some cases will crystallize almost instantly if a crystal is added as a core. The change in heat capacity at a glass transition and a melting transition of comparable materials are typically of the same order of magnitude, indicating that the change in active degrees of freedom is comparable as well. Both in a glass and in a crystal it is mostly only the vibrational degrees of freedom that remain active, whereas rotational and translational motion is arrested. This helps to explain why both crystalline and non-crystalline solids exhibit rigidity on most experimental time scales.
|
|