|
Brunette Girl With Big Breasts Reveals On The Old Couch With Black Panties And Brass Bracelets
|
The copper in brass makes brass germicidal. Depending upon the type and concentration of pathogens and the medium they are in, brass kills these microorganisms within a few minutes to eight hours of contact.
The bactericidal properties of brass have been observed for centuries and were confirmed in the laboratory in 1983. Subsequent experiments by research groups around the world reconfirmed the antimicrobial efficacy of brass, as well as copper and other copper alloys (Antimicrobial copper-alloy touch surfaces). Extensive structural membrane damage to bacteria was noted after being exposed to copper.
In 2007, U.S. Department of Defense’s Telemedicine and Advanced Technologies Research Center (TATRC) began to study the antimicrobial properties of copper alloys, including four brasses (C87610, C69300, C26000, C46400) in a multi-site clinical hospital trial conducted at the Memorial Sloan-Kettering Cancer Center (New York City), the Medical University of South Carolina, and the Ralph H. Johnson VA Medical Center (South Carolina). Commonly touched items, such as bed rails, over-the-bed tray tables, chair arms, nurse's call buttons, IV poles, etc. were retrofitted with antimicrobial copper alloys in certain patient rooms (i.e., the “coppered” rooms) in the Intensive Care Unit (ICU). Early results disclosed in 2011 indicate that the coppered rooms demonstrated a 97% reduction in surface pathogens versus the non-coppered rooms. This reduction is the same level achieved by “terminal” cleaning regimens conducted after patients vacate their rooms. Furthermore, of critical importance to health care professionals, the preliminary results indicated that patients in the coppered ICU rooms had a 40.4% lower risk of contracting a hospital acquired infection versus patients in non-coppered ICU rooms. The U.S. Department of Defense investigation contract, which is ongoing, will also evaluate the effectiveness of copper alloy touch surfaces to prevent the transfer of microbes to patients and the transfer of microbes from patients to touch surfaces, as well as the potential efficacy of copper-alloy based components to improve indoor air quality.
In the U.S., the Environmental Protection Agency regulates the registration of antimicrobial products. After extensive antimicrobial testing according to the Agency’s stringent test protocols, 355 copper alloys, including many brasses, were found to kill more than 99.9% of methicillin-resistant Staphylococcus aureus (MRSA), E. coli O157:H7, Pseudomonas aeruginosa, Staphylococcus aureus, Enterobacter aerogenes, and vancomycin-resistant Enterococci (VRE) within two hours of contact. Normal tarnishing was found to not impair antimicrobial effectiveness.
|
|